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Effects of CW Interference on Phase-Locked Loop
Performance

Murat F. Kars, Member, IEEEand William C. LindseyFellow, IEEE

Abstract—This paper focuses on the modeling and analysis of ~ An area of application where tracking a sinusoidal signal in
phase-locked loops in the presence of continuous wave (CW) inter- the presence of interference is radar detection and tracking. For
ference such that the operating vulnerability to CW jamming and gy ample, monopulse angle tracking radars are widely used for
interference can be accessed. The loop phase error is character- . . . . - . \
ized, and the conditions under which the loop remains locked in fre- tracking airborne ve.h|cles in which f[he re(?e|vers oftenuse PLL's
quency to the desired carrier are presented. Analysis is conducted for coherent detection of the received signals [3]-[5]. In such
for arbitrary offsets of carrier and interferer signal frequencies  systems, additional targets within the mainlobe of the radar an-
relative to the quiescent voltage-controlled oscillator (VCO) fre- tennalead to additional sinusoidal signatures. Some systems op-

quency. The results show that loop performance depends not only g 416 on the output of an ordinary bandpass filter that is used
on the frequency difference between the desired signal and inter-

ferer, but also on the frequency offset between the quiescent VCO mstead_ of f_i PLL.In such_systems, when there are m“'“‘_"e tar-
oscillation and desired carrier. The vulnerability of the loop to the ~ gets flying in close formation, the “temporal power centroid” of
presence of interference increases if interferer and desired signal the two targets, which can be neither of them, will be tracked
spectral locations are in opposite sides of quiescent VCO frequency. [3]. On the other hand, PLL trackers resolve and lock onto one
Index Terms—nterference, phase-locked loops, phase synchro- Of the incoming signals. A drawback of using PLL's is that the
nization. system may “jump” to track the secondary target when sec-
ondary target signal level exceeds a certain threshold, or if the
secondary target signal frequency is very close to primary target
signal frequency [4], [5].
YNCHRONIZATION of the local oscillator with the in-  The majority of studies on performance of carrier synchro-
oming carrier phase is fundamental to the demodulati@ization systems in the presence of interference assume the ab-
process in a coherent communications receiver. In many aience of noise affecting the system. If the signal-to-noise ratio
cumstances, carrier synchronization system performance is (8NR) is so high that the primary agent affecting the system
graded by both additive noise and interference. Due to crowdizgthe interferer, deterministic approach gives accurate results
of the useful frequency spectrum, many systems are now begitgbut system behavior. Analytical studies of [2]-[5], [8], [11],
affected by interference more than they were a few decadesi [12] utilize harmonic balance method to analyze the dy-
ago. Interference signals may also be jamming signals from utamics of the phase error signal in the absence of noise. The
friendly sources or spurious signals generated in local oscilleenditions under which the loop stays locked to the desired car-
tors. rier are derived for the specific case of no initial detuning be-
In coherent communications systems that use a sinusoitl@éen the desired carrier and the quiescent voltage-controlled
carrier and a phase-locked loop (PLL) to track the carriescillator (VCO) frequencies. Harmonic balance method will
phase such as deep space network, interference effects hgye be utilized in this paper and will be explained in detail in
proved to be important [1], [2]. Earth stations employed fahe next section. Another technique that has been utilized is the
space exploration are often operated in an environment g@mputer simulation by implementing the loop equation in a
man-made electromagnetic radiation. Carrier synchronizatieoomputer code and observing the phase error [6], [10].
is fundamental to telemetry and range-doppler measurementg, relatively small number of papers on synchronization
of DSN, and these are affected by interference [1]. So, intejystem performance in the presence of both noise and inter-
ference effects are of importance for such systems beca@sers have been published [13]-[18]. One technique that has
they can severely degrade synchronization and overall systegen used is the experimental observation of the system [13],
performance. [14]. In [15], numerical techniques are utilized for performance
evaluation of second-order PLL in a noisy, specular plus
. . . diffuse multipath environment, and the standard deviation of
Paper approved by M. Luise, the Editor for Synchronization of the IEEE‘Ie phase jitter is used as a criterion to yield performance
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tionary process with zero mean and two-sided spectral density
Loop of height Ny /2 W/Hz.
Filter, F(p) With s(t), r(¢), andI(t) as defined in (1)—(3), the equation

~

that governs the loop phase erfar(t) 2 ®(t) — ¢(¢)) can be
shown to satisfy [19]

z(t)

Coniiiea
Oscillator, ®, 1 d(P (t) . .
—— L =y - F sin o(t) + v/ R sin(o(t
| | K75 a =" (p) | sinp(t) + v/ ((t)
Fig. 1. PLL system block diagram. 1
+ AQt+ Af) + ﬁN(t) 4)
there is no frequency offset between interferer and desired
signal frequencies. In [18], an analysis for the special casewith
no frequency offset between the desired signal and quiescent A Q AT
VCO frequency is conducted by employing a different method. v = K—\;E’ R, = 5 (5)

In Section Il, the carrier synchronization system model and
the stochastic differential equation that governs the phase-erroHere, R, is the interference power to the signal power ratio,
process are given. _ _ K is the open loop gaimy2 £ €, — 2y andAd 2 6, — 6, are

In Section Ill, previous studies are generalized to analyze ¢fe frequency and phase offsets between the interferer and the

fects of arbitrary initial detuning between the quiescent VCesired carrier, respectively, adtip) is the loop filter charac-

and desired signal frequencies. It is assumed that a single %’Mzed in Heaviside operator notatiqn% (d/dt) is the Heav-

interferer exposes the system and noise is absent. The analysis, operator). For a first-order loop, the loop filter is identi-

with the assumption of absence of noise gives useful results ol by F(p) = 1, for a perfect second-order loaB(p) =

high SNR conditions. Phase error is characterized while the lo . ) .
is locked to the desired signal, and the condition for the loop ngpTQ)/pTl’ and for an imperfect second-order labpp) =

+ pT»)/(1 + pT1). The noise procesd () in (4) is a sta-

rerl‘nalsn Io:kec?\;n frequdenlc%tct) desw_l?d f'gt?]al tls der|ve<|j.t_ 3onary, white Gaussian noise zero mean and two-sided spectral
n Section 1V, a model that manifests the time evolution o ensity of heightVo /2 W/Hz [19].

the phase-error process in the presence of both additive noisg now introduce a few parameters for later use Mét) —

and interference is developed. This model facilitates an ext %-(w” and P(w) = /(F(w)) be the magnitude and phase
sion of the previously available result_s . case of arb_ir sponse characteristics of the loop filtBfw), respectively.
frequency difierence between the desired and interferer SIS, single-sided loop bandwidth obtained from linearized PLL

and. arb|tr_ary initial detu.nlng between the quiescent VCO ary eory B, is given byB;, = K+/5/4 for a first-order loop and
desired signal frequencies. In the steady state, the phase-error ) A
4T2) with r = FOTQK\/§ andFO = TQ/Tl for

process is modeled as sum of a periodic component and a Ha-= (r+1)/(
tionary random process. By using this model, a Fokker—Plan@iecond-order loop.
analysis is conducted in order to obtain statistical insight into
loop performance. [ll. L oOPPERFORMANCE IN THEABSENCE OFADDITIVE NOISE
Our goal is to characterize the phase-error process which is
Il. CARRIER SYNCHRONIZATION SYSTEM MODEL governed by (4), withv(¢) = 0. We will use approximations in
Consider the PLL system block diagram given in Fig. 1. ThHrder to characterize the phase error in the region of interest of
system is exposed to an interference sigi{a) in addition to the Signal and system parameters. _ S
desired signak() and noise(t). The force term in (4) (withV(¢) = 0) is periodic in time
Let the desired carrier, interference, and the VCO output sfgd€ [0 presence of the CW interference. As a result, the phase
nals be represented as error in steady state is periodic, and it can be represented in a
cosine series. The nature of the phase trajectory and the number

s(t) = V25 sin ®(t) = V2S5 sin(wot + 6(¢)) of significant harmonics in the solution varies significantly de-
= V25 sin(wot + Qot + ) 1) pending on the frequency offset between the interferer and the

desired carrierA2, relative to the linearized loop bandwidth
By, As aresult, the analysis can be dissected into the following

I(t) = V2J sin ®;(t) = /2 sin(wot + Qst +6,5)  (2) three cases.

ey SN j Case l: |AQ| » By;
t)=v2 O(t) = v2 t+0(t)). 3

r(t) = V2cos ®(t) = V2 cos(wot + 6(t)) ) Case ll: |AQ| < By.
Here, the desired carrier signa(t) is assumed be of con- Case lll: |AQ| ~ By,

stant amplitude,/25 and of constant frequency and phase off- In most applications, Case | is of practical interest since typ-
sets {2y and#f,) relative to the quiescent VCO oscillation (fre-cally the loop is designed to be narrow in order to track the
quencywyp). Similarly, the interference signal is of constant amincoming carrier with minimum phase error. As will be done in
plitude of/2.J and is of constant frequency and phase offsetisis paper, Cases | and Il can be studied analytically. However,
2, andd; relative to the quiescent VCO frequency and phasanalytical treatment of Case Il is intractable, and numerical so-
The additive white Gaussian noisét) is assumed to be a sta-lutions are necessary.
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A. Case l:|AQ| > By,

Using the constant and first harmonic terms in the cosine se- 12
ries representation of phase error leads to the following model

(2], [8], [9I: T
©(t) = co + ¢1 cos(AQ + AG + 7). (6)

The validity of this model is substantiated over a large range

of desired carrier, interference and loop parameters and is also©

supported by experimental observation [9] and computer simu- .|
lations of the authors. For determiniggt), one can insert (6)

: Simulation Results, R;=0.2
: Simulation Results, R;=0.5
: Simulation Results, R =1.0
: Simulation Results, R;=1.5

: Analytical Aproximation, B
: Analytical Aproximation, B,
: Analytical Aproximation, R,
: Analytical Aproximation, R,

085

DOwWP X+ 0 ]

, (radians)

08

into (4) and use the “harmonic balance method” to obtgji, , 02

and+;. The method involves, as the name implies, equating

the relevant coefficients of each harmonic term of the left-hand e T TR TEEETEERTEEETE
side (LHS) and the right-hand side (RHS). Efforts to incorporate AQ/ B,

higher order harmonics in the harmonic balance method Iea}:ds2 c of. obtained wiical fions [from (15)]
{[o} omparlson 1 0 ained from analytica approxma ons [irom

to untractable sets of equatlons and by computer simulations for first-order loadR (= 0.2,0.5,1.0,1.5, v =

Application of the method with the model given in (6) leads.o).

to

. Vo~ Extractin — from (8), inserting into (7), and rear-

0= = M(O)Joler)sineo + v/ FoJu(er) cos(co = )] ranging tﬁ;OZéCSatioﬁll)eads tc(> ) ame
v c%_D cos P(AQ) 1

ClD COs P(AQ) IM(AQ)\/ RS[Jo(Cl)—l—JQ(Cl)] COS(Co—’(/)l) M(O) 2 M(AQ) Jo(cl)'

(8) 1) Phase-Error Characteristics While the Loop Is

Locked: Exact and explicit simultaneous solution of

c1Dsin P(AQ) = M(AQ){V/R,[Ja(c1) — Jo(er)] (10), (12), and (13) is impossible and it is necessary to
x sin(cop — 1) — 2J1(c1) cosco }- (9) utilize some approximations to gef,c;, and ;. Using

Jo(er) = 1,Ji(c1) = ¢1/2, andJz(¢1) = 0 (accurate for
Here,D = AQ/K\/_ is the detuning between the desired cai; < 1) in (12) yields
rier and interference normalized by the loop galg-), /1 (-),

sin ¢y =

(13)

and.J,(-) are Bessel functions of orders 0, 1, and 2, respectivelyc? = 5 ol . >
From (9), one can get two solutions fgr as pe | [(cos (A sin P(A§2)  cosco
M(AQ) M(AQ) D
Yri=co— A (14)
thro=c+A-m (10)

Utilizing the unperturbed value af, = sin™' v in the ab-
where sence of interference in (12) to yield an approximationdar
A = sin— { 1 and usingJ/o(c1) ~ 1in (13) leads to

VE;s[Ja(er) = Jo(er)] ) R,
c1Dsin P(AQ = 2
: [WS(Z)) + 2J1(c1) cos Co:| } - (11) cos P(AQ) 2+ sin P(AQ) N 1—~2
_ ) _ M(AQ) M(AQ) D
Here,sin!(-) is defined in[—7/2, 7 /2]. The loop and system
parameters determine which solution/afwill be valid for sat- (15)
isfying (7)—(9). For the range of parameters of interest (small 5
¢1), it can be seen from (8) thatt, ; is valid whenD > 0 and  sin¢y = —— — & D cos P(AL2) (16)
1,2 is valid whenD < 0 (Note that for the loop filters consid- M(0) 2 M(AR)
eredcos(P(AL2)) > 0). _ o The value ofy; can be obtained by using andc, obtained
Inserting (10) into (8), using the identity/>(x) = from (15)and (16)in (10). Above results reduce to earlier results
(.2/$)f]1 (z) — Jo(x), and rearranging the resulting equafor the special case of = 0 [9].
tion yields In Fig. 2, we have plotted; versusAQ /By, for first-order
9 2 loop for Ry, = 0.2,0.5,1.0, and1.5. For R, = 1.5, the simu-
R, = chLP(AQ) lation results for smalA$?/ By, are missing The loop loses its
ZM(AQ)]l(Cl)

frequency lock to the desired carrier in this range. For a given
c1 Dsin P(AQ) + Ju(en) ? value of AQ2/By,, as R, increasesg; increases. In the range
2M(AQ) J1l61) €05 12 AQ/By, > 2, the analytical approximations are close to sim-
Jo(er) — Jolcr) (12) ulation results. In the rangAQ/B;, < 2, the analytical ap-
proximations are close to simulation results for snfgll As

+4
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tation of the loop equation (4) (wittV(¢) = 0) as a function
of AQY/By, for R, = 1. The results are given for first and per-
fect second-order loops. For readability of the curves, the re-
sults for imperfect second-order loop which are very close to
the curves of perfect loop are not given. Note that the accuracy
of (15) and (16) increases ag decreases. Sincg decreases
with decreasing?, and with increasing\¢2, the accuracy of the
approximations improves d3, decreases anfi{ increases.

2) The Conditions for Losing Frequency Lock in the Absence
of Additive Noise:If the loop is locked in frequency to the

A : First Order Loop
v B ::Second Order Loop

e - Numerical Solution 1 desired carrier, the average instantaneous frequency of the VCO
osho T_.-—.: Analytical Approximation | should equal the desired signal frequency and the phase-error
°o . "o :Simulation Results evolution is periodic. Thus, for anytimg, the phase error
ez 4 &8 Ag‘;’/ BL‘Z “ooteo1E20 should satisfy the following relation:
to+(27/|AQ)
— . . . (a)l . i . . / (p(t) dt = ¢ <t0 + %) — (,O(to) =0. (17)
1419 A First Order Loop 4 to | |
P B« Second Order Loop I the loop is not locked in frequency to the desired carrier, the
1270 _“Numerical Solution T average frequency of the VCO output differs from the frequency
A 0 ----- : Analytical Approximation | of the desired carrier, thus, the phase error is no longer peri-
- B0 o : Simulation Resuits (First Order) odic and it is not possible to satisfy (17). Thus, (17) gives a
8 oal ) " i.Simulation Results (Second Order)) frequency-lock criterion for the loop. Since (7) is obtained by
E integration of (4) (withN(¢) = 0) over the time interval of

27 /|AQ| with ¢(t) given in (6), it has the same meaning as (17)
in terms of loop and interference parameters. Then, in order to
obtain the conditions that ensure lock to the desired carrier, one
should find the conditions under which it is possible to establish
(7). Starting from (7) to (9), we had reached (15) and (16). Ex-
; . . ; . ; ; . . amination of (15) reveals that &5 is increased;; increases. In
V- TS (16) (which is a rearranged form of (7) after the approximations
) are introduced), it; increases, the RHS increases or decreases
Fig. 3. Comparison of (a)cg and (b) ¢; obtained from analytical _(depending on the sign ak2) without bou-nd' At a-certain Crit-- :
apgbroximations [from (16)], by ﬁumerical soiLljtion of (7)—(9) and by cgmputépal value Ofcl’_ the RHS exceeds one in magnltUde and it is
simulations for first and perfect second-order loofs (= 1, v = 0.5, for N0 longer possible to solve (16). We denote this value, ais
second-order loopfy, £ Ty /Ty = 0.025, r = 4). 1, and the value of?; that leads ta: o, as R, ;. Clearly,
if Rs < R;cr, (16) [thus (15)] and (7) can be established and
there is a stable lock point. On the other handg jfis increased
R, gets larger, the analytical results start deviating from sinbeyondR; .., a stable lock point does not exist and the loop
ulation results. This is due to two reasons. First,fasgets cannot stay locked in frequency to the desired signal. In order
large, in the range\Q2/ By, < 2,¢; gets so large that the as-to getc; ., and R; ., we setsin ¢y to —1 or +1 accordingly
sumption ofc; < 1 that leads to simplified expressions doesvith the sign ofAQ2. From (16), we get
not hold. Second, the nature of the steady-state phase trajec-

tory is not satifactorily represented with the first harmonic in <

0.6

1

04r

0.2r

2 M(AQ)

D cos P(AQ) (18)

the cosine series expansion of the phase error. This can be seen cicr =
through the following arguement. Fdt, = 0.5, the analyt-
ical approximation results deviate from simulation results ifi we also setcosco = 0 in (14), it follows that
the rangeAQl/By, < 2. We havec, ~ 0.75 in this range. cia = /s o M(AQ)/|D|. Thus
ForR, = 1.0 andR, = 1.5, ¢; = 0.75 is reached at larger N oD
values of AQY/Br.. However, the analytical approximation re- R, ., = <— + sgn(AQ ) .
sults are clos/e to simulation results igrz O.7§gn the curves M(0) s A M(AL) cos P(AR2)
for R, = 1.0 and R, = 1.5. Similarly for the case of?, = 1, These results reduce to earlier results of [2] and [9hfet 0.
the analytical approximation results deviate from simulation re- In order to display the vulnerability of the loop types con-
sults in the range\2/ By, < 2. We haver; ~ 1.1 inthis range. sidered so far, we displai, ., versusA€)/By, for first, per-
From the curveR?, = 1.5, the analytical approximation is closefect second-order, and imperfect second-order loops in Fig. 4
to simulation results foe; = 1.1. for v = 0.0 and~y = 0.5. The first-order loop is inferior to

In Fig. 3, we present comparison f andc; obtained from second-order loops with respect to holding its frequency lock
(15) and (16), obtained by numerical solution of (7)—(9) ani the desired carrier. For = 0, the perfect and the imperfect
from computer simulations conducted by software implemetoops act similarly. It is observed that the performance of the

i -
W + Sgn(AQ))

(19)
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100 . . T ‘ T . ‘ . 20 ; y . . . . .
ok A — Perfect Second Order Loop,y = 0.0, 0.5 6k A — Perfect Second Order Loopyy= 0.0, 0.5 b
0" B "_ Imperfect Second Order Loop,y = 0.0 B - Imperfect Second Order Loopy= 0.0 D
gol--C. — First Order Loop, ¥ = 0.0 _ 15} © — FirstOrder Loop,y=0.0
D - Imperfect Second Order Loop,y = 0.5 D - Imperfect Second Order Loopyy=0.5
70F E _ First Order Loop, ¥ = 0.5 14 E-— First Order Loop,y= 0.5

| ——— : Simulation Results
: Analytical Results

Rs,cv

L : i
0 2 4 6 8

10 12 14 16 18 20
AQ /B, AQ/B,

. ) ) . Fig. 5. Comparison of analytical and simulation results .. versus
Fig. 4. R, versusAQ/B, for first, perfect, and imperfect second-ordery ¢,/ g for first, perfect, and imperfect second-order loops= 0.0, 0.5, for

Loops ¢ = 0.0, 0.5, for second-order loop&, ES To/Ty = 0.025, r = 4). second-order loopsi, Py To/T) = 0.025, r = 4).

perfect second-order loop is not affected by initial detuning i describe loop behavior for this case. Thus, for assuring the
the loop. This can also be seen by examination of (18) and (R)idity of (19) over the range oR, under which the loop stays
by observing the presence of the loop filter pole at origin for ke in frequency to the desired signal, it should be assumed

perfect loop(M(0) = oo). However, imperfect second-ordernat Aq) > B;. This condition was used in [8] for the analysis
loop and the first-order loop are highly vulnerable to initial degy pe tractable.

tuning. For example, for = 0.5, the loop is more vulnerable to
0C]CVVA;ffects for negative values of¢} rather than positive values B. Case II:|AQ| < By,

This leads to the following idea for improving PLL perfor- FOr analysis of the loop whepAQ}| < By, an alternative
mance against CW interference for first and imperfect secormgih()d is required. In this case, the period of beatnotegof
order loops. If differencé?, is measured and a control signalls = 27/|AQ], is much larger than the loop time constants, and
is applied to the VCO so that the quiescent frequency of tifels possible to analyze the PLL behavior with a completely
VCO is the same as the desired carrier frequency, effectivélifferent method. The loop time constants are in the order of
Q, is set to zero, and the system will not suffer from the above Bz. With the|AQ|< Bz, assumption?; is much bigger than
quoted effect when an interferer of arbitrary frequency is intréhe loop time constants, and the the loop can converge to a
duced. Measurement of the difference between quiescent Ve®ady-state regime while the time-varying force term in (4) re-
frequency and the desired carrier frequency may be conductgdins relatively constant. Then, one can use the instantaneous
by observing the dc level shift at the input of the VCO wheralue of AQt + A# 2 A# as a constant for short-term analysis
the desired carrier is introduced. The control of quiescent VC@ the loop. Note that due to mismatch between the desired car-
oscillation frequency can be performed by applying an offseer and the interfering frequencé’ is a function of time.
voltage at the VCO input. By using simple trigonometric identities, itis possible to write

In Fig. 5, a comparison of analytical results obtained frorf#) (with NV(¢) = 0) as
(19) and computer simulation results for a first-order loop is )
presenteq. Slmqlatlons are conducted bylmplementmg the loopl de(t, AY) zfy—F(p)\/l + R+ 2\/R_Scos AY
equation in a digital computer and observing the phase-error tré/S dt

jectory. Itis shown that the results obtained through the approx- ) _1{ VRssinA¢
imations give results that are close to simulation results for large -sin | () + tan T VR cos g )|’
AQ/By,. (20)

In Fig. 5, we see thatin the range?/ By, < 4, the analytical

approximation fork, .. [as given by (19)] does not follow the  |f the |oop phase error converges to a stable lock point while
simulation results closely. The reasons for this are as followgy s constant, the LHS of (20) is zero andt, A®') is a

First, asAQ2 becomes smaller, as implied by approximate anglpnstant. Let us denote the steady-state valug(6fA8) as
ysis, ¢ . becomes larger. However, the main assumption WE_(A@'). From (20), we have

used for reaching simplified analytical results was< 1. Thus,

the approximations are no longer valid. Another reason that con- ~/F(0)
tributes to the invalidity of the approximations fA2 < By is ¢ (A#) =sin*

that (6) is no longer an accurate model for the phase-error signal, V14 Ro +2VE; cos(AY)
and higher harmonic contents @f¢) are significant. As a re- - [ VR, sin(A6")
sult, the simple models given in (14) and (16) are not sufficient ‘ 1+ /R, cos(A8)

} +2nr. (21)
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characteristics (average value and peak-to-peak variations) do

k not change in a drastic manner drasticallys@/B;, changes
A in the interval[0, 2].

0.4l 8 The approximation given (21) can be used to access loop vul-
nerability to a CW interferer which is within the loop bandwidth.
We will give the condition under which the loop equation (20)
has a stable solution. This will give the conditions that quarantee
that the loop will continue to stay frequency locked® varies

0.6

¢ .. (radians)
o
N

O'—k_ in [0, 27]. It is possible to reach (21) only if
* . H F 0
oal : Analytical Result for No Frequency Offset | 1< v/F(0) / <1 (22)
A : First Order Loop , \/1 + R, + 2/ R, cos(A¢)
—o4l... B Perfect Second Order Loop | SinceA# [0, 2] and the smallest value of the denominator in
C :Imperfect Second Order Loop .. (22) is|1 — V/R,| (it is attained whem\¢’ = =), in order for
0 02 04 06 08 AQ1/ 5 12 14 18 18 2 (20)to have a stable solution for arbitralyy’, one should have
L
(@) ‘w <1 23)
0.8 T T T i T T T T 1-— V RS
Equation (23) is actually a condition for the loop to hold its fre-
quency lock to the desired signal in the absence of noise. If (23)
is satisfied, there is a stable solution for (20), and, thus, there
is a stable operating point for the loop. If (23) is not satisfied,
0 (20) does not have a stable solution. For the casg.0f 1,
g with A8 = = the interference cancels the desired signal, signal
£ o4 v 1 presence is lost, and the loop cannot track the desired signal.
& * - Analytical Result for No Frequency Offset For a perfect second-order loop, (23) is always satisfied, since
®*"" A': First Order Loop 1 F(0) = oo (except fork, = 1, for which with A¢" = , the
ool B Perfect Second Order Loop | interference cancels the desired signal, and loop operation is not
' C : Imperfect Second Order Loop possible). For imperfect second- and first-order loops, the range
oAl | of R, values with which there is a stable operating point can be
explicity written as (from (23) with#'(0) = 1)
0 1 | L L I3 1 1 1 1
0 02 04 06 08 1 12 14 16 18 2 R, <(1- 2 24
508, <= (24)
(b) R, > (1+]) (25)

Fig. 6. Simulation results for (a) the averagg... and (b) the
oscillation magnitude,, of the phase errorp(t) versus AQ/B; and

the approximation for\{2 = 0. (R, = 0.2, v = 0.5. For second-order loop, 1IV. LOOP PERFORMANCE IN THE PRESENCE
A
Fo = Tp/Ty = 0.025,r = 4.0). OF ADDITIVE NOISE

In the presence of noise, the problem has to be dissected

Here,n is any integer andin ' (-) is defined if—7 /2, 7/2].  with respect to relative magnitudes pAQ| and By, in the
For imperfect second-order and first-order lodi®) = 1. For same manner as was done in the analysis with the assumption
a perfect second-order l0of;(0) = oc, and the first term in of absence of noise. For casd€|AQ| > Bp), we present
(21) vanishes (except for the casefafandAf’ =, forwhich  an analysis that uses suitable approximations to obtain the
the interference cancels the desired signal and loop operatiofdkker—Planck equations that govern the phase-error statistics.
not possible). For the case of AQ2] ~ By numerical solutions for the

We are interested in seeing the extent to which characteritimme-independent Fokker—Planck equation corresponding to
tion of (¢) obtained by varyingA\é’ in ¢.s(A#') continues to (4) is necessary. In this paper, we do not attempt to present such
hold whenA?/ By, # 0. We have conducted computer simulasolutions. If|AQ2| <« By, the period of the beatnote in (4) is
tions and measured the averagg. and the magnitude, of much larger than the loop time constants. Similar to the idea of
the phase-error oscillations for various valueg\$t/ By, in the the analysis we conducted in the absence of interference, one
interval0 < AQ/B;, < 2. We define oscillation magnitude asmay conduct a short-term analysis of the loop while assuming
half of peak-to-peak variation of the phase error. In Fig. 6, what the the interferer is at the same frequency with the desired
plot the average... and oscillation magnitudg,, of the phase signal and phase of the interferer is constant. In [17], statistics
error as a function oA/ By, in the intervald < AQY/By, < 2. for the phase-error process for this case has been derived. When
In this figure, the results obtained by finding the average and héik interferer is not exactly of same frequency, as a worst-case
of peak-to-peak variation @f(t) from (21), withAé’ varying in  analysis, performance parameters of interest can be obtained
[0, 27] are given ai\(}/ By, = 0. Itis shown that the phase-errorthrough averaging over the phase of the interfering signal.



892 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 48, NO. 5, MAY 2000

50 T T

and one can use the average these terms of (27)gvier get

the dynamic behavior of(¢). This has the same meaning as ap-
proximating the first and second terms inside the brackets and
the last term on the RHS of (27) by their average values. The

7 resulting equation of evolution can be obtained in a straightfor-
% ward manner as
3 1 . ) o
; | K\/§: =~—L(p) |(Jolc1) + V RsJ1(eq)sinepy ) sin 2
N
1
< + VRsJi(er)costprcos i+ —=N(t)| . (28)
7 Rt f Vs
Df: Equation (28) is a stochastic differential equation with time-
—10} _‘0 5 : : : 1 independent coefficients. Thus, it can be analyzed by standard
=" Fokker—Planck techniques.
STR=30dB, : ‘ ‘ ' ’ We will call 2(¢) the time-averaged phase-error process
2% 2 4 5 8 10 12 14 16 18 wi Z(t) ! veraged p p

since its dynamics is described by the stochastic differential
equation whose force term is obtained by averaging the time-
Fig. 7. () andy(t) for a typical operation scenario for a first-order pLLVarying force term of the the stochastic differential equation de-
(v=05D=4R=1,K=1,5=1,andSNR 2 = 30 dB). scribing the phase-error procegét). It should be noted that
z(t) is of unbounded variance as time increases. The phase error
disperses along the:” axis as time increases, and its variance
becomes infinite. As is customary in analysis of phase tracking

_ ) systems in the presence of noise whose equation of operationis a
We develop an approximate model for the evolution of thg,-pastic differential equation of the form (28), we shall work

phase-error process by utilizing a technique which is similgfi, modulo2r reduced version of(#) which we call 2().
to the Krylov—Boguliubov method for analysis of underdampegy, s in what follows, the Fokker—Planck equation describing

sinusoidal oscillators [20], [21]. the statistics of(t) will be solved with2s periodic boundary
In the absence of noise, wheA()| >> By, the phase error . jitions in %”. Let

was satisfactorily modeled to be of the form given in (6). We A
assume the following form for the evolution of the phase-error d(t) = 2(t) + c1 cos(vpy + AQt + AB). (29)
process:

time, seconds

A. Approximate Model Development for Phase-Error
Evolution

From (29), the instantaneous pdf ¢f¢) conditioned on
@(t) = Z(t) + c1 cos(p1 + AQt + AB). (26) 1, AL, andAfis

Here, 2(¢) is a random process whose statistics will be deter-P(¢, 1, A0, AQ) = p-(¢ — ¢y cos(1 + AQE + AF), AQ)
mined through the following analysis. The second term in (26) (30)

is a periodic sinusoidal term whose parameters are determin%:i

by the earlier analysis in absence of noise of this paper. In %veerepz(z,AQ) Is the pdf ofz(#) conditioned onAf2. Note
y analy NS paper. hat the statistics of(¢) does not depend ofvé [see (28)]. For
absence of noisé(t) = ¢o. In the presence of noise we assume

o ] . A - p.(z, AQ), we use the subscript” contary to the notation in
thatz(¢) is slowly varying relative td/, = 2W/|AQ~- Asanil- ihe rest of the paper to signify that the density considered is that
lustration, in Fig. 7, we give trajectories oft) andz(¢) of (26)  of the variable 4. In the steady state, the meand(t) condi-

for a first-order loop for a specific choice of loop and signal pa- A :
rameters. Foned ont, AQ2, andAf (=m(¢, t, A, AQ)) can be written as

Differentiating (26) with respect to time and insertiggt) m(¢, t, NG, AQ) & 0)
from (4), we get the stochastic differential equation for time =’
= 2(t) + ¢1 cos(p1 + AQt + AF)

evolution of 2(¢)
=m(z, AQ) + ¢; cos(1hy + AQt + AF)

1 .
K\/gé(t) =~ — F(p) [Sin(é(t) + ¢1 cos(ip1 + AQE+AB)) (31)
. here overbar denotes statistical expectation over noise and
+ VR, sin(3(t) + + AQt+ AF w _ o'
sin(#(0) il cos(¥ ) m(z, AQY) is the mean of:(¢). Note thatm(z, AQ) is inde-
+ AQt+ A6) + ﬁN(t)} pendent of time. Using (29), the conditional mean square value

¢2(t) of the phase-error process can be calculated as

P2(t) = 22(t) + 22(t)cy cos(ihy + AQt + AF)
With the second term on the RHS of (26), we characterize the 2 o
. ' AQt 4+ Af). (32
deterministic time variations @f(¢). For the parameter range of e cos(v + +A6). (32)
interest, we assume that the periodic variations(ej caused From (31) and (32), it follows that variance of the phase error is
by the periodic forcing due to presence of interference is neghi?(¢, t, A, AQ) = o%(z, AQ), wheres?(z, AQ) is the vari-
gible. In (27), the force terms are periodic with on the RHS, ance ofz(t).

+ 1 Dsin(y; + AQE + AB). 27)
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. 0.9 T T T T
B. PDF of the Time-AvagedPhase-Error Process Loop SNR = 6 dB \ o5 A0 o8
Equation (28) can be writen in the following form: “l yo0s =225, L=
. . ool R=1AQ/B =8
——z=~v—F(p) [MO sin(z + Fo) + —=N(t)| (33) R=0
KVsS Vs g ° Re=1,AQ/B =8
where 3 osf
4 2 2 4 -1 * ,
MO = Al + A2 Po = tan (AQ/Al) (34) 04
A . 0.3 - .
A1 = [Joler) + VRsJ1(c1) sin ] (35) al |
Ay 2 /Ry Iy (1) cos oy (36) ’
Equations of the type (33) has been studied extensively in [19]. T T R 2 (0 R rees) 50 100 150
In particular, (28) represents the equation of operation of a ' 1989
second-order tracking loop with phase detector characteristics @)
. 0.8 T T T T T T
g(z) = Mosin(z + Fo). B _ Loop SNR = 6 dB R=1AQ/B, =8
Results of [19] can be utilized to yield the steady-state pdf o7l
p(z) of the modulo2r reduced process(t) for the second- =02
order loop 08¢ 1
R.=2.25AQ/B,=8 Re=1,40/B,="8
1 L §T%.4, L= i
> A = Brz+aq cos(z+y) _ 05 ~
Pl A = s B T (@) g R =0
0.4}
2427 N
/ e~ lPryten cosly+ M)l gy (37) & L |
where 0.2
rMo+ 1\ p’ME [ ~ S
B = [ —2 — —(1-F z + D, b 1
o < M, ) 7 M, ( 0)Sln(7 + 0) 0.1
Fy ob— : : :
x |1 _;’_ 38 -150 -100 -50 0 50 100 150
{ o M3(rMy + 1)0%} (38) z, (degrees)
rMo+1\ |, 1 ()
1 = 77 p Mg — r Moo2 (39) Fig. 8. Steady-state pdf of time-averaged phase-error pre¢esfor various
0 0“a interference scenarios for (a) first-order and (b) second-order loops. For
T first-order loop,p = 4,~ = 0.5, for second-order loogf, = 0.002,r = 4,
I 72 r2 Py KVS (40) P=4Hr=02
1
A S Mo + 1 employ (10), (15), and (16) for approximation@f cq, andi); .
o= NoB,’ By, = L (41)  1nboth figures, we choose the SNR in the loop bandyi) to
be 6 dB. In terms of loop parameters, we havs% S/(NoBp).
o2 2 5in?(2(t) + Po) — sin(z() + Fo) - (42) Forafirst-order loopy = «.

In Fig. 9, p(z, AQ2) obtained through (37) and by computer

Here, ;4 (-) is the Bessel function of imaginary ordgf;. experiments for a first-order loop for two different interference
The pdf for a first-order loofF'(p) = 1) is given by (37) with scenarios are compared. The computer simulations are con-
parameter definitions; = Mya, wherea = (4v/S/NoK)and ducted by direct implementation of (4) on a digital computer.
£1 = va. Inthe absence of interference, the pdf for a first-orddthe phase-error trajectories that are obtained by running the
loop (F'(p) = 1) is given by (37) withF, = 0,«; = «, and codes several times are used to extract the parameters of the
£ = B = va. Here, we introduced the parameteto denote model given in (26). It is shown that (26) is a suitable model
the value off3; in the absence of interference. for the phase error. It should be noted that the approximate

From (33), by comparison with the pdf in the absence of irsolutions given in (10), (15), and (16) are most accurate for
terferer(R, = 0, My = 1, Py, = 0), one can recognize the facte; < 1. For R = 5,¢; is not much smaller than unity and
that the effect of the interfering tone is to introduce a hfasto  the approximation fop(z, AQ2) does not exactly follow the
z(t), and modify the effective input signal level to the loop bgimulation results. A more detailed account of the simulation
a factor of M. procedure and extensive results pertaining to comparison of

In Fig. 8,p(z, AQ2) for several interference scenarios for firsanalytical and simulation results can be found in [16].
and second-order loops are given. For being able to present nun Fig. 10, the meam(z, AQ?) of the time-averaged phase-
merical results, it is necessary to assume particular approxinearor process as a function of interference to desired carrier mag-
tions tocy, ¢p, andi; . In the figures in the rest of this study, wenitude ratioR; is depicted for several values &f2/ By, for first
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Loop SNR =6 dB
Loop SNR =6 dB
T = =
*T AQ/B =16 s0l. 7=05
oel ¥=05 1
, v AQ/B=-16 |AQ/B, =16
—o0- : Experimental S o 1
& osr ) ) 1 5
< __ :Analytical -\%i
% 0.4 . & 6o .
<-
0.3F E N
® 50 i
0.2r i
40 R
0.1h B
v -150 -100 -50 0 50 10 150 300 g 1‘0 1‘5 2‘0 2‘5 30
z (degrees) R,
70 T T T
) ) ) ) ) ) Loop SNR =6 dB
Fig. 9. Comparison of analytical results with computer simulations for 551 J
first-order loop.(p = 4,7 = 0.5). AQ/B =-16 y=02
— 60F 4
w
[0
[
S 55 .
60 . . . 3
- Loop SNR = 6 dB o sor 1
40 @/B,=-16 . < AQ/B =16
¥=05 % 451 f
@ 20
o AQ/B =
g 0 N B =40 |
a
< 20 ‘ ‘ ‘
N e 5 10 15 20 25
E R
-40
Fig. 11. Standard deviation(z, AQ2) versus R, for various values of
60 A/ By, for (a) first-order loop and (b) second-order loop. For first-order loop,
p = 4, = 0.5, and for second-order loopy = 0.002,r = 4,p =4,y =
0.2.
-0 5 10 15 20 25 30
RS
@ In the figures, some portions of the graphs may seem to be
" ‘ incomplete. The noiseless analysis of the loop reveals that at
Loop SNR = 6 dB these portions the frequency lock to the desired carrier is lost.
50 t
v=0.2
4 1 C. Statistical Dynamics of the Time-AagedPhase-Error
@ 30 1 Rate in a First-Order Loop
(94
2 = . From (28), sinceN(t) is a zero-mean noise process and
o . ~ . ~ .
5 w0 | sinZ = sinz andcosZ = cos z, we can formally write the
< mean rate fo(t) as ([19])
N0 ,
£ _ T
-10 4 I = . .
AQ/B =40 >=3=KVS [v — (Jo(er) +  RsJi(c1) sinapy ) sin 2
-20+ - —7
a0} | — (v RsJ1(c1) cosipr) cos z|p(z) dz.  (43)

Fig. 10. Meano(z, AQ) versusR, for various values ofAQ)/B; for (a)
first-order loop and (b) second-order loop. For first-order lIgog; 4, v = 0.5,

and for second-order loog,, = 0.002,r =4,p =4,y = 0.2.

and second-order loops. Similarly, plots for standard deviation
a(z, AQY) for first and second-order loops are given in Fig. 11.

25

Here, overbar denotes statistical expectation. Note that
27[N+ — N ] where N+ and NV are the average number of
cycle slips in the positive and negative”“directions per time
unit.

By using standard techniques [19] from (37) and (43), it is

straightforward to show that

N+ _ Qg sinch(fy)

~ N = BRI 44
SN S ()P 44)
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Here,sinch(z) 2 sinh(z)/x. For any given %,” the ratio of

positive and negative cycles slip rates is given by [19] ok Loop SNR =6 dB ]

n y=05
N _ we-UG+2m)]
N

=&, (45) i

AQ/B =16

From (45) and (44), the individual slip rates in the positive and

negative directions can be determined as

AQ/B =40
1 e:l:ﬂ',ﬁl

NEf=KVS L
- dr2a L, (o1)]?

(46) 2

Then, the total number of cycle slips in the positive and negative
directions per unit time is 0

1 cosh(mf)

A - , .
T.=Nt+ N7 = KVS (47) Fig. 12. Increase factoE versusR, for various values ofAQ/B; for

200 2| L, (n)? first-order loop(p = 4,7 = 0.5).
D. Statistical Dynamics of the Phase-Error Rate in a In the absence of interference, we name the cycle slip rates in
First-Order Loop positive and negative directions and the sum of cycle slip rates in

. positive and negative directions 85", V.-, andZ,. The effect
For givenAd and A, from (29) of introduction of interference on the cycle slip rates can then

;)(t) m — e AQsin(ih + AQE+ AB) be examined by the ratios
— 1 AQsin(hy + AQt 4 AF). (48) Bl Nf Ny T, L)

TN TN L lGawE OO

=z
=z

Thus, in the steady stgté(t) is a periodic function of time.
We will further average(t) over any interval o2r/|AQ|, the Here, we made use of the fact thaf, = 1 andf, = f§in
period of the beatnote of the nonstationary phase-error proct¥g absence of interference. The ter&t denotes the increase

to yield thetime-averaged mean phase-error rate factor in the slip rates by the introduction of the interference. In
Fig. 12, this increase factor for various interference scenarios is
= A AQ ltER/1AQD presented.
d)ave = % d)(t) dt. (49)
to

) V. CONCLUSION
The usage of time-averaged phase-error process for character-

izing cycle slip behavior can easily be substantiated as follows. '€ vuI_nerablIlty of PI_‘L’S to CW mt_erfer_ence IS an_alytlcally_
The basic assumption in deriving the model in (26) was thgl{laractenze_d under s_unable apprOX|mat|ons._ Prevpgs_ studies
the time constants of the loop are larger comparetAQ)|. are generahz_ed to smultaneously tak(_a arbitrary |n|t|a! fre-
During typical operation of the loop, the expected time intervaf!€NCy detuning between the desired signal and the quiescent
between two consecutive cycle slips are much greater than %%O frequencies a}nd arbitrary interferer frequenue; |nt'o
smallest the loop time constants. Thus, with respect to cyclesﬂ count. An approximate model for phase-error evolution in

behavior, the averaging formulated in (49) will not lead to ange presence of interference and additive noise is introduced,
loss in performance evaluation nd its validity is verified with computer simulations.

L . s = The initial detuning between the desired carrier and the qui-
Itisimmediately seen from (49) and (48) thi,, = 2. Thus, i ent VCO frequencies has been found to be imperative on
i

the time-averaged mean phase-error rate is equal to the mg rformance in the bresen f CW interference if th
rate of time-averaged phase-error process. Hence, the dyna] periormance € presence ot erierence €
oop filter does not have a pole at origin. If there is initial de-

behavior ofp(t) can be studied by studying the dynamic be-""" i :
havior ofz(td)).( ')rhe implication of tr):is arg)lljmgent is tﬁat the nef'"'N9 first-order and imperfect second-order PLL performance

number of cycle slips ob(¢) is given by (44). Also, the results depends on the frequency difference between the desired carrier

given in (45)—(47) apply directly in describing the cycle slip pe2nd interference signals, not only in absolute value but also in

havior of(t). Thus, we havé\f(j = NFandN; = N_ where
Nq‘f and N are the cycle slip rates.

Dynamic behavior op(t) is embedded ia(¢) in a time-aver-
aged fashion. Thus, the above result is hardly surprising. In fact,The authors would like to thank one anonymous reviewer for
if one examines the model of the evolution of the phase-errois careful reading of the original version of the paper, particu-
process given in (26); cos(y1 + AQt + A) term is just an larly for his/her suggestions on how to reformulate the statistics
additional oscillatory term. Thus, the above result was alreadf/the phase-error process and how to use numerical methods to
implied by (26). verify the region of validity of the approximate solutions.
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