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Abstract—In this paper the modeling and analysis of of ef-

fects multiple CW interferers on Phase Locked Loop performance

is conducted such that the operating vulnerability to jamming,

interference or multipath can be accessed. First, in the absence

of additive noise and presence of interference within the loop

passband, a statistical model is developed which demonstrates

the effect of multiple CW interferers on the phase error pro-

cess. The steady state phase error is characterized statistically

through its probability density function and moments. The con-

ditions for keeping locked and the probability that the loop stays

locked to the desired carrier frequency are derived for arbitrary

loop filter characteristics. A novel outage criterion is established

for the satisfactory operation of the loop and outage probabilities

are presented for certain operating scenarios. Second, assuming

the presence of Additive White Gaussian Noise, a Fokker Planck

analysis is conducted in order to obtain the probability density

function, moments and cycle slip rates of the phase error process.

I. INTRODUCTION

Analysis of carrier synchronization loop performance in
the presence of a single CW interferer has been the subject of
many studies in the literature. Several of these elaborate on
performance characterization with the assumption of absence
of noise effecting the system. [1], [2], [3], [4], [5], [6], [7], [8], [9],
[10]. Some articles take the presence of noise into account [11],
[12], [13], [14].

In [15] results of previous literature on the performance
of Phase Locked Loops (PLL) in the presence of a CW interferer
are generalized to extend their practical applicability. Namely,
in [15], the assumption of no initial detuning between the desired
carrier and the quiescent Voltage Controlled Oscillator (VCO)
frequencies is uplifted in the analysis for the cases of both the
presence and absence of noise. Also in the presence of noise the
earlier assumption that the interferer and the desired carrier are
of same frequency [13], [14] is not used.

Examination of effects of multiple CW interferers on
PLLs is of practical intererest in several applications. Deep
space coherent communications an tracking systems utilize a
tone to convey the signal carrier phase which is tracked by a
PLL which may be effected by CW radio frequency interference
[16].

Frequently, the local oscillator (LO) output used for
down conversion in a communications receiver possesses spuri-
ous frequency components near the LO center frequency. When
such LO’s are used to down convert the input signal, the result-
ing output contains spurious components which are subjected
to the loop input. Such components degrade the loop perfor-
mance. The results of this study can be used to identify the
vulnerability PLLs to spurious signals and specify the accept-
able level of spurious terms.

Monopulse angle tracking radars are being widely used
for tracking airborne vehicles in which the receivers often use
PLLs for coherent detection of the received signals [2], [3], [4].
Due to high mobility of the vessels, the radar signatures of a set
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of targets span a large bandwidth due to Doppler shifts, and,
each signature may also be expected to have a large Doppler
rate. Hence, the PLL’s used in the tracking radars used should
have large front end bandwidths [19]. Thus many signals from
several targets are not uncommon in such scenarios.

A. System Model

Consider the Phase Locked Loop system given in Fig. 1
which is also exposed to the interference signal J(t) as well as
additive noise n(t) which is assumed to be a white, Gaussian
stationary process with zero mean and single sided spectral den-
sity of height N0 W/Hz and the desired carrier signal s(t) which
can be represented as

s(t) =
√

2S sin Φ(t) =
√

2S sin(ω0t + Ω0t + θ0) (1)

n(t)J(t)

s(t)

Voltage
Controlled
Oscillator

r(t)
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Filter(t)ε

z(t)
x(t)

Fig. 1. Phase Locked Loop System Model

Here, the carrier is assumed to be of constant frequency
and phase offsets (Ω0 and θ0) relative to the quiescent VCO
oscillation of frequency, ω0. We assume that the interference
signal is a collection of L + 1 CW signals

J(t) =
√

2Js sin(ω0t + Ωst + θs) +

L∑
i=1

√
2Ji sin(ω0t + Ωit + θi) (2)

The first term on the right hand side of (2) is assumed to
have specular nature which has constant power of Js and is of
constant frequency and phase offsets Ωs and θs relative to the
quiescent VCO frequency and phase. The remaining L sinusoids
are also of constant power, Ji, and of frequency offsets Ωi and
random phase offsets θi i = 1.........L relative to the quiescent
VCO. The effects of these terms on the loop performance will
be characterized statistically.

With s(t) and J(t) as defined in (1) and (2), the equation
that governs the phase error between the VCO output and the

desired carrier (
�
= ϕ(t)) can be shown to satisfy [18]

1

K
√

S

dϕ(t)

dt
= γ − F (p)

[
sin ϕ +

√
Rs sin(ϕ + ∆Ω t + ∆θ)

+Ir(ϕ, t) +
1√
S

N(t)

]
(3)

Ir(ϕ, t)
�
=

L∑
i=1

√
Ri sin(ϕ + ∆Ωit + ∆θi) (4)



γ
�
=

Ωo

K
√

S
, Rs

�
=

Js

S
. Ri

�
=

Ji

S
i = 1.......L (5)

where, K is the open loop gain, ∆Ω
�
= Ωs − Ω0 and

∆θ
�
= θs − θ0 are the frequency and phase offsets between the

specular interferer and the desired carrier, ∆Ωi
�
= Ωi − Ω0 and

∆θi
�
= θi − θ0 are the frequency and phase offsets between the

ith random interferer and the desired carrier,. F (p) is the loop

filter characterized in Heaviside operator notation (p
�
= d

dt
is

the Heaviside operator). N(t) is a white Gaussian Noise Pro-
cess with single sided spectral height N0 W/Hz.

The total interference power to signal power ratio with

which the loop is exposed (
�
= Req) in the presence of multiple

interferers is defined as

Req
�
= Rs + Rr = Rs +

L∑
i=1

Ri (6)

where Rr is the total random multipath interference
power to desired signal power ratio.

B. Statistical Characterization of Random Interference Effects
on the Loop Equation

It is possible to write the random interference compo-
nents represented by Ir(t, ϕ) in the loop equation (3) as

Ir(ϕ, t) = IL(t) sin ϕ + QL(t) cos ϕ (7)

IL(t)
�
=

L∑
i=1

√
Ri cos(∆Ωi t + ∆θi) (8)

QL(t)
�
=

L∑
i=1

√
Ri sin(∆Ωi t + ∆θi) (9)

We assume that the phases of the interferer tones,
θi i = 1.....L are independent and uniformly distributed
random variables in [0, 2π]. Then ∆θi i = 1.....L are in-
dependent and uniformly distributed and IL(t) and QL(t) are
wide sense stationary processes with autocorrelation function

RIL
(τ) = RQL

(τ) =
1

2

L∑
i=1

Ri cos(∆Ωi τ) (10)

The power density spectrum related to (10) is given as

SIL
(ω) = SQL

(ω) =
1

4

L∑
i=1

Ri[δ(ω − ∆Ωi) + δ(ω + ∆Ωi)] (11)

We assume that SIL(ω) is narrow band relative to the loop
bandwidth. Then the variations in force terms in (3) are much
slower relative to the loop time constants. Thus, for short term

analysis of the loop ∆θ′ �
= ∆Ωi t0 + ∆θ i = 1.....L can

be assumed constant for arbitrary time instant t0. Then time
dependence on (4), (8) and (9) can be dropped. Furthermore
∆θ′

i i = 1.....L are independent and uniformly distributed in
[0, 2π]. Note that for the multipath scenario in which the mul-
tiple reflections of the carrier tone reaches the receiver without
Doppler shift ( ∆Ωi = 0 i = 1.....L), ∆θ′

i = ∆θi and no
approximation is made.

Then, IL
�
=

∑L

i=1

√
Ri cos∆θ′

i and QL
�
=∑L

i=1

√
Ri sin ∆θ′

i are zero mean uncorrelated random vari-

ables of equal variance σ2
IL

= σ2
QL

= Rr/2.

Several authors have attempted to obtain statistical
characterization of the forms given in (8) and (9) [20], [21],
[22], [23], [24]. A common conclusion is that, as the the num-
ber of contributors, L , is increased, statistics of IL and QL

will approach Normal distribution [20], [21], [22], [23]. In [22]
is concluded that for L > 10, the amplitude distribution of
sum of equal magnitude sine waves approaches Normal distri-
bution. This result can also be stated based on Central Limit
Theorem arguments. We will assume that L is such large that

the Gaussian approximation holds. Let I
�
= limL→∞ IL and

Q
�
= limL→∞ QL, It can easily be shown that I and Q are

jointly Gaussian as well as being marginally Gaussian. In sum-
mary, I and Q are Gaussian random variables with zero mean
and variance σ2 = σ2

I = σ2
Q = Rr / 2. Furthermore, since IL

and QL are uncorrelated for any L, I and Q are uncorrelated,
thus, independent random variables.

In the rest of this study we will assume that ∆Ω = 0 (i.e.
the specular component and the desired carrier have the same
frequency) which represents a worst case scenario. In the light
of above discussions and by utilizing a trigonometric identity
the loop equation (3) can be written as

1

K
√

S

dϕ(t|I, Q)

dt
= γ − F (p)

[
M2 sin(ϕ + P2) +

1√
S

N(t)

]
(12)

M2
�
=

√
(1 + I +

√
Rs cos ∆θ)2 + (

√
Rs sin ∆θ + Q)2.

P2
�
= tan

−1
[ √

Rs sin ∆θ + Q

1 + I +
√

Rs cos∆θ

]

II. ANALYSIS IN THE PRESENCE OF SPECULAR
AND RANDOM INTERFERENCE

In the absence of noise, assuming that a stable lock point
exists for the loop, since the steady state phase error is constant,
by equating the left hand side of (12) to zero, the steady state

phase error (
�
= ϕss(I,Q)) can be written as

ϕss(I, Q) = sin−1
[

γ

M2 F (0)

]
− P2

+
− 2 n π. (13)

Here n is any integer and F (0) is the loop filter transfer
function at the origin. The existence of a stable solution in the
presence of detuning requires that

| γ

M2 F (0)
| < 1 (14)

It is always possible to get a stable solution for a perfect second
order loop (F (0) = ∞); however, this is not the case for a for
a first order or an imperfect second order loop (F (0) = 1) .
We now obtain the lock condition for an arbitrary ∆θ. Since
∆θ ε [0, 2π] and it can easily be shown that the smallest value

of the denominator in (14) is |
√

(1 + I)2 + Q2 − √
Rs| (it is

attained when ∆θ = − tan−1[(1 + I)/Q]). In order for (3) to
have a stable solution for arbitrary ∆θ, one should have

| γ/F (0)√
(1 + I)2 + Q2 − √

Rs

| < 1 (15)

For first order and imperfect second order loops, for a given
specular interference scenario, due to marginally normal statis-
tics of I and Q, theoretically there are always some realizations
such that (14) is not satisfied and the loop is forced out of lock.
In Fig. (2) the region corresponding to loss of lock is given on



Fig. 2. The locus of interference scenarios that forces the loop to lose

lock (Shaded Region).

In the rest of the analysis in the absence of noise we as-
sume that no frequency offset between the desired carrier and
quiescent VCO frequency exists (γ = 0) for the analysis of first
and imperfect second order loops. No assumption on γ is re-
quired for the analysis of perfect second order loops.

Consider the phasor respresentation given in Fig. 3 were
the vector S represents the desired signal, D represents the spec-
ular interference component. I and Q represent the components
of the interference signal, U, that are in-phase and quadrature
with the desired signal respectively. The loop tracks the sum,
R, of desired and interference vectors and a steady state phase
measurement error, ϕss, occurs.

ϕ0

ϕss–
ϕ0

Outage Region

Q

S

I

R

∆θ

Jr

Js

Fig. 3. Phasor Representation in the Presence of a Specular Path and

Multiple Random Paths

The phase error has a probability density function given
by [25]

p(ϕss) =
e
− A2

2σ2

2π
+

A cos(ϕss − ϕD)

(2π)1/2
· e

− A2 sin2(ϕss−ϕD)
2σ2

·[1 − Q(
A cos(ϕss − ϕD)

σ
)] (17)

ϕD
�
= − tan−1(

√
Rs sin ∆θ

1 +
√

Rs cos∆θ
)

A
�
=

√
1 + Rs + 2

√
Rs cos(∆θ)

Q(x) =

∫ ∞

x

1√
2π

e− t2
2 dt

In Figs. 4 and 5 we plot the mean m(ϕss), and the stan-
dard deviation σ(ϕss), vs Rr for for several specular component
scenarios respectively.
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Fig. 5. σ(ϕss) vs. Rr for Several Interference Scenarios.

Depending on the values I and Q, the steady state phase
error may be quite large although the loop remains locked to
the desired carrier (with phase error given as in (13)). Thus,
it is necessary to establish a criterion for satifactory operation
in terms of phase error magnitude. We assume that the PLL
is rendered in outage if |ϕss| > ϕ0, where ϕ0 is a pre-chosen
value suitable with the application and performance require-
ments of the system (see Fig. 3). The PLL outage probability

(
�
= P (outage)) can then be calculated through

P (outage) =

∫ 2π−ϕ0

ϕ0

p(ϕss) dϕss (18)

The outage probability of the loop may be expressed as [26]

P (outage) =
1

2π

∫
π−(ϕ0+ϕD)

0

e
− A2 sin2(ϕ0+ϕD)

2σ2 sin2 ϕss dϕss

+
1

2π

∫
π−(ϕ0−ϕD)

0

e
− A2 sin2(ϕ0+ϕD)

2σ2 sin2 ϕss dϕss (19)

In Fig. 6 P (outage) is depicted as a function of the total
interference to signal ratio, Rr for ϕ0 = 45o.

III. ANALYSIS IN THE PRESENCE OF NOISE

Equations of the type (12) has been studied extensively
in [13]. In particular, (12) represents the equation of operation
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Fig. 6. P (outage) vs. Rr for Several Interference Scenarios.

of a second order tracking loop with phase detector character-
istics g(ϕ) = M2 sin(ϕ + P2). Results of [13] can be utilized to
yield the steady state probability density function p(φ) of the
modulo-2π reduced phase error φ(t) for the second order loop

p(φ|I, Q) =
1

4π2 e−β1π |Ijβ1 (α1)|2
eβ1φ+α1 cos(φ+P2)

·
∫

φ+2π

φ

e−[β1y+α1 cos(y+P2)] dy. (20)

β1
�
=

(
rM2 + 1

rM2

)
ρ′M2

2

F0

[
γ

M2
− (1 − F0) sin(φ + P2)

]

·
[
1 +

F0

ρ′M2
2 (rM2 + 1)σ2

G

]

α1
�
=

(
rM2 + 1

rM2

)
ρ′M2

2 − 1

rM2σ2
G

F0
�
= T2/T1 r

�
= F0T2K

√
S

ρ
′ �

=
S

N0B′
L

B
′
L

�
=

rM2 + 1

4T2

σ2
G

�
= sin2(φ(t) + P2) − sin(φ(t) + P2)

2

Here Ijβ1(·) is Modified Bessel Function of purely imag-
inary order jβ1, and, overbar denotes statistical expectation.
The probability density function for a first order loop follows
from (20) by setting F0 = 1 and letting r → ∞.

The unconditioned phase error probability density func-
tion of the phase error can be found by averaging over the nor-
mal densities of the in-phase and quadrature terms I and Q. In
Figs. 7 and 8 we present p(φ) for a first order loop; Absence of
specular interference component (Rs = 0) is assumed and the
results are given for several interfernce to desired signal power
ratio Rr values, for γ = 0 and γ = 0.5 respectively. Also the pdf
in the absence of interferers is presented in these figures.

In Figure 9 the mean of the phase error is plotted as a
function of Rr for γ = 0.5, Rs = 0 for a first order loop. If
γ = 0 and Rs = 0, p(φ) has zero mean. This can be seen from
the symmetry of (20) around its mean and the symmetry of the
density functions of the I and Q.

In Fig. 10 the variation of standard deviation in the ab-
sence of the specular component as a function of Rr is depicted
for γ = 0 and γ = 0.5 for a first order loop. Also the standard
deviation in the absence of interferers can be observed from
these figures.
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Conditioned on I and Q, the probability current related

to φ(t) (
�
= Jφ|I,Q) and the cycle slip rates in the positive and

negative directions (N+
φ|I,Q and N−

φ|I,Q respectively) for a first

order loop can be obtained by using standard techniques to be
[18]

Jφ|I,Q = [N
+
φ|I,Q

− N
−
φ|I,Q

] =
Ω0

2π

sinch(β1π)

|Ijβ1 (M2)|2 (21)

N

+
−
φ|I,Q

= K
√

S
1

4π2α1

e
+
−πβ1

|Ijβ1 (M2)|2 . (22)

Here, sinch(x)
�
= sinh(x)/x. If one desires to obtain the

unconditioned dynamics of φ(t), it is necessary to perform the
averaging of quantities of interest over the distributions of I and
Q. Denoting the slip rates in the positive and negative direc-
tions in the absence of interferers with N+

a and N−
a respectively

the effect of interference can then be examined by the ratios:

EI,Q
�
=

N+
φ|I,Q

N+
a

=
N−

φ|I,Q

N−
a

=
|Ijβ1 (α1)|2
|Ijβ1 (M2)|2 . (23)

Here “EI,Q” denotes the increase factor in the slip rates
by the introduction of the interferers. The average increase
factor, E, can be obtained by averaging (23) over p(I) and p(Q).

IV. CONCLUSIONS

We introduced a statistical characterization of effects of
multiple CW interferers on the steady state operation perfor-
mance of Phase Locked Loops. It has been found that first
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and imperfect second order loops are susceptible with respect
to losing lock in the presence of interference when there is initial
detuning between the desired carrier and the idle VCO frequen-
cies. Perfect second order loops do not display this vulnerabil-
ity. The outage probabilities that are obtained through a novel
definition for outage shows that in the presence of a specular
interferer, the performance degradation depends on the the rel-
ative phases of the desired carrier and the specular interferer.

Results in the presence of noise reveal that conditioned
on the the in-phase and quadrature components of the random
interference, loop SNR is modified and a bias is added to the
phase error process. In absence of specular interference, averag-
ing over the statistics of interference reveals a spreading of the
phase error probability density function, thus an increase in the
variance of the phase error.
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