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Abstract

This paper focuses on the modeling and analysis of
phase locked loops in the presence of CW interference
such that the operating vulnerability to CW jamming
and interference can be accessed. In the absence of
noise the loop phase error signal is characterized ana-
lytically and the conditions under which the loop re-
mains locked to the desired carrier are presented. Anal-
ysis has been conducted for arbitrary frequency detun-
ing between the desired carrier and the quiescent Volt-
age Controlled Oscillator (VCO) frequencies and arbi-
trary frequency offsets between the interferer and de-
sired signals. The results show that loop performance
degradation depends on the frequencies of the inter-
ferer and the desired signal relative to the center VCO
frequency; it also depends upon the interference power
to the desired signal power ratio. In the presence
of noise and interference, a model which manifests the
time evolution of the phase error process is developed.
A Fokker Planck analysis is conducted on this model in
order to illustrate the method and obtain insight into
system performance in the presence of interferer.

1 Introduction

Synchronization of the locally generated reference
phase with the incoming carrier phase is a fundamental
phase of demodulation process in a coherent commu-
nications receiver. In many circumstances, carrier syn-
chronization system performance is degraded by both
additive noise and interferences. Due to crowding of
the useful frequency spectrum many systems are now
being effected by interferences more than they were a
few decades ago. Interferences may also be jamming
signals from unfriendly sources.

Application areas of the results and the devel-
oped tools of this study includes CW interference ef-
fects on telemetry/range-Doppler measurements (for
example NASA’s Deep Space Network (DSN) [1, 2]);
Coherent monopulse angle tracking radar performance
analysis in the presence of a secondary target within
the main lobe of the transmitter antenna (which leads
to sinusoidal signature) [3, 4, 5]; Spurious frequencies
leaking from the local oscillator circuitry in a receiver.
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The performance analysis of carrier synchroniza-
tion systems has been the subject of several studies.
Majority of these assume the absence of additive noise
[2, 3, 4, 5, 6, 7, 9, 10, 15, 16]. If Signal to Noise Ra-
tio (SNR) that effects the synchronization circuitry is
such high that the primary agent effecting the system
is the interferer, deterministic approach gives accurate
results about system behavior.

One technique that has been utilized is the com-
puter simulation by implementing the loop equation in
a computer code and observing the phase error [6, 7, 8].
In [6] and [7] the critical interference to signal power ra-
tio (ISR) beyond which the loop loses lock is presented.
The study is conducted by slowly increasing the am-
plitude of the interferer and observing the trajectory
of the phase error. Beyond a certain critical value, the
phase error is no longer periodic but increases without
bound. In [8], performance of a perfect second order
loop is examined by computer simulations in a noisy,
specular plus diffuse multipath environment. The stan-
dard deviation of the phase jitter is used as a criterion
to yield performance curves.

Analytical studies of the references [2, 3, 4, 5, 9,
10, 16] utilize harmonic balance method either directly
or indirectly in order to analyze the dynamics of the
phase error signal in the absence of noise. Due to time
periodic force term in the loop equation due to CW
interferer, the phase error is periodic and thus it can
represented in the form of a Cosine series. Approxi-
mation of such expansion by d.c. and first harmonic
terms leads to the following model [2, 9, 10]

ϕ(t) = co + c1 cos(∆Ω t+ ∆θ + ψ1). (1)

For determining ϕ(t) one can insert (1) into (2) and
use “Harmonic Balance Method” to obtain c0 , c1 and
ψ1. The method involves, as the name implies, equat-
ing the relevant coefficients of left and right hand sides
of the equation for each harmonic. Efforts to incorpo-
rate higher order harmonics in the Harmonic Balance
Method leads to untractable sets of equations. The va-
lidity of this model substantiated over a large range of
desired carrier, interference and loop parameters, and,
is also supported by experimental observation [9].
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Figure 1: Carrier Synchronization System Model

The equation governing the phase error process
ϕ(t) can be shown to satisfy:
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Here, R is the interference power to the signal power
ratio, K is the open loop gain, ∆Ω

�
= Ωi − Ω0 and

∆θ
�
= θi − θ0 are the frequency and phase offsets be-

tween the interferer and the desired carrier respectively,
and, F (p) is the loop filter characterized in Heaviside

operator notation (p
�
= d/dt is the Heaviside opera-

tor). For a first order loop, the loop filter is iden-
tified by F (p) = 1, for a perfect second order loop
F (p) = (1 + pT2)/ pT1, and, for an imperfect second
order loop F (p) = (1 + pT2)/(1 + pT1). For future
usage, let us introduce the notation M(ω) = |F (ω)|,
and, P (ω) = � (F (ω)) (i.e. M(ω) and P (ω) are mag-
nitude and phase response characteristics of the loop
filter F (ω)). The noise process, N(t), appearing (2) is
a stationary, white Gaussian noise zero mean and two
sided spectral density of height N0/2 W/Hz [13].
3 Loop Performance In the Absence of

Noise

By utilizing the model given in (1), we employ Har-
monic Balance Method. After a few suitable approxi-
mations the magnitude of the oscillations (c1) and the
average phase error (c0) in the presence of CW inter-
ferer can be shown be [19]:
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Here D
�
= ∆Ω / K

√
S is the normalized detuning be-

tween the desired carrier and interference. These re-
sults are accurate for |∆Ω| > 4BL where BL is the
one sided linearized loop bandwidth.

The condition on loop, desired signal and inter-
ference parameters which will quarantee locking onto
the desired carrier can be derived by invoking a period-
icity condition on the phase error signal. The critical
value Rcr of interference to signal power ratio beyond
which the loop loses its lock to the desired signal is:

Rcr =
(

γ

M(0)
+ sgn(∆Ω)

)
2D

M(∆Ω) cosP (∆Ω)
.

(6)
For the case γ = 0, these results reduce to the earlier
results [2, 9]. We present Rcr vs ∆Ω/BL for first, per-
fect second order and imperfect second order loops in
Fig. 2 for γ = 0.0 and γ = 0.5. From Fig. 2, it can be



seen that the first order loop is highly inferior to second
order loops with respect to holding its lock to the de-
sired carrier. For γ = 0, the perfect and the imperfect
loops act similarly. It is seen that the performance of
the perfect second order loop is not affected by initial
detuning in the loop. This can also be seen by exam-
ination of (6) by observing the presence of the loop
filter pole at origin (M(0) = ∞). However, imperfect
second order loop and the first order loop are highly
vulnerable to initial detuning. For the given positive
detuning parameter value of γ = 0.5, it is seen that
the loop is more vulnerable to CW effects for negative
values of ∆Ω rather than positive values of ∆Ω.
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Figure 2: Rcr vs. ∆Ω/BL for First, Perfect, and,
Imperfect Second Order (critically damped) Loops
(T2/T1 = 0.025, γ = 0.0, 0.5).

When |∆Ω| < 4BL, the model given in (1) loses
its accuracy due to significant higher harmonics. Thus,
the above results are not applicable. For this case,
suitable techniques of analysis are discussed in [19].

4 Loop Performance In the Presence of
Noise

For statistical characterization of the loop behavior in
the presence of noise one may try to use Fokker Planck
techniques. However, it is not possible to get a closed-
form analytical solution to the Fokker-Planck equa-
tion related to (2) [20]. Here we develop an approxi-
mate model for the evolution of the phase error process
utilizing the phase error trajectory in the absence of
noise. The technique is similar to Krylov-Boguliubov
method for analysis of underdamped sinusoidal oscil-

lators [21, 22]. In this model the phase error process
ϕ(t) is written as:

ϕ(t) = z̃(t) + c1 cos(ψ1 + ∆Ωt+ ∆θ); |∆Ω| > 4BL

(7)
Here, the second term is the periodic beatnote in the
phase error trajectory that is characterized in the ab-
sence of noise by Harmonic Balance Method. The first
term z̃(t) is called the time averaged phase er-
ror process since its dynamics is described by the
Langevin equation whose force term is obtained by av-
eraging the time varying force term of the Langevin
equation describing ϕ(t)
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Here Jo(·) and J1(·) are Bessel functions of order 0 and
1 respectively. Equation (8) is a Langevin Equation
with time independent coefficients. Thus, it can be an-
alyzed by standard Fokker Planck techniques to yield
the steady state probability density function (pdf). We
now examine the effects of the presence of CW inter-
ferer for a first order loop. However it should be noted
that the method is applicable to loops of arbitrary or-
der. For a first order PLL the probability density func-
tion of the modulo-2π reduced version of z̃(t) which we
call z(t) is given by [19]:

p(z) =
1

4π2 e−βπ |Ijβ(M1)|2 e
βz+A1 cos z−A2 sin z

·
∫ z+2π

z
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Here, the loop signal to noise ratio, α , and loop de-
tuning, β, and, the remaining parameters of (9) are
defined as:
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In Fig. 3, we present p(z) for several interference
scenarios for the case of γ = 0.5. Relative to the case
of absence of interference (R = 0) it is seen that when
an interferer is introduced with R = 1, z(t) has larger
bias and variance when D = −2 compared to the case
of D = 2. Thus, along with the magnitude of D, its



sign is important in performance analysis for nonzero γ.
In Figs. 4 and 5, the mean and the standard deviation
of z(t) as a function of interference to desired carrier
magnitude ratio, R, are depicted for several values of
D. In the incomplete portions of these figures the loop
is no longer locked to the desired carrier.
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Figure 3: Steady State pdf of Time Averaged Phase
Error Process z(t) for Various Interference Scenarios.
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Figure 4: Mean m(z) versus R for Various Values of D
(β = 2, α = 4)

σ 
( z

), 
(d

eg
re

es
)

D=-4

D=4D=1 D=10

R

0 5 10 15 20 25 30
20

30

40

50

60

70

80

90

Figure 5: Standard Deviation σ(z) versusR for Various
Values of D. (β = 2, α = 4)

The probability current related to z(t), (Jz), and
cycle slip rates in the positive and negative z directions
(N+

z and N−
z ) are given by:
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z −N−

z ] =
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It is shown in [19] that these results hold for probability
current and cycle slip rates for ϕ(t) due to modeling of
the phase error given in (7). We name the slip rates
in positive and negative ϕ directions as N+

ϕ and N−
ϕ .

Denoting the slip rates in the absence of interference as
N+

a and N−
a , ehe effect of interference can be examined

by the ratios:

E
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N+
ϕ
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=
N−

ϕ
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=
|Ijβ(α)|2
|Ijβ(M1)|2 . (16)

Here the term “E” denotes the increase factor in the
slip rates by the introduction of the interference. In
Fig. 6 E vs R for various D values. enhancement
factor for various interference scenarios are presented.

5 Conclusions

The initial detuning between the desired carrier and
the quiescent VCO frequencies has been found to be
imperative on PLL performance in the presence of CW
interference if the loop filter does not have a pole at
origin. If there is initial detuning, first order and im-
perfect second order PLL performance depends on the
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Figure 6: Enhancement Factor E versus R for Various
Values of D (β = 2, α = 4).

frequency difference between the desired carrier and
interference signals not only in absolute value but also
in sign. This dependence on relative spectral locations
seems to not have been reported for the literature up
to present time.

Further work is in progress for performance anal-
ysis of suppressed carrier loops in the presence of in-
terference and effects of multiple interferers on carrier
synchronization.
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